If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+14y+38=0
a = 1; b = 14; c = +38;
Δ = b2-4ac
Δ = 142-4·1·38
Δ = 44
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{44}=\sqrt{4*11}=\sqrt{4}*\sqrt{11}=2\sqrt{11}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{11}}{2*1}=\frac{-14-2\sqrt{11}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{11}}{2*1}=\frac{-14+2\sqrt{11}}{2} $
| 5f=-7+4f | | 3=4q-9 | | 4+3r=r-8 | | 13x+17=30 | | 2(4n+8)=-64 | | 0.03x+0.05(10,000-x)=60 | | 3x+15=-3x | | -5x-8=6 | | w+5/6=-1/5 | | 20x=-3.7 | | 7+5k/4=9k | | 1/9x+18=9/x+2-5/9 | | 750=-16t^2+220t | | 2p-1=6 | | t+48+265=553 | | z-1.05=79.1 | | 750=900p | | 2(n-5)=6n+3 | | 3(7y-4)=9yy= | | 3=-2n+7 | | 8a=-3a+16 | | -40p+-30=5-5p | | -x=-121 | | 44(3+c)+c=c+44 | | 10x-5=-3x+8 | | -9p−2p+10=-9p−8 | | 1x+(-2)=3 | | 143-11x=75+6x | | 4x+11=2x−9 | | 6d=-3d+9d | | 8x+700000=25x | | -(x-7)-x=-x |